Data Mining for Lifetime Value Estimation
نویسنده
چکیده
Customer lifetime value (LTV, see e.g. Bauer et al. 2005 and Rosset et al. 2003), which measures the profit generating potential, or value, of a customer, is increasingly being considered a touchstone for administering the CRM (Customer relationship management) process. This in order to provide attractive benefits and retain high-value customers, while maximizing profits from a business standpoint. Robust and accurate techniques for modelling LTV are essential in order to facilitate CRM via LTV. A customer LTV model needs to be explained and understood to a large degree before it can be adopted to facilitate CRM. LTV is usually considered to be composed of two independent components: tenure and value. Though modelling the value (or equivalently, profit) component of LTV, (which takes into account revenue, fixed and variable costs), is a challenge in itself, our experience has revealed that finance departments, to a large degree, well manage this aspect. Therefore, in this paper, our focus will mainly be on modelling tenure rather than value.
منابع مشابه
CUSTOMER CLUSTERING BASED ON FACTORS OF CUSTOMER LIFETIME VALUE WITH DATA MINING TECHNIQUE
Organizations have used Customer Lifetime Value (CLV) as an appropriate pattern to classify their customers. Data mining techniques have enabled organizations to analyze their customers’ behaviors more quantitatively. This research has been carried out to cluster customers based on factors of CLV model including length, recency, frequency, and monetary (LRFM) through data mining. Based on LRFM,...
متن کاملCustomer lifetime value model in an online toy store
Business all around the world uses different approaches to know their customers, segment them and formulate suitable strategies for them. One of these approaches is calculating the value of each customer for the company. In this paper by calculating Customer Lifetime Value (CLV) for individual customers of an online toy store named Alakdolak, three customer segments are extracted. The level of ...
متن کاملIntegrating AHP and data mining for effective retailer segmentation based on retailer lifetime value
Data mining techniques have been used widely in the area of customer relationship management (CRM). In this study, we have applied data mining techniques to address a problem in business-to-business (B2B) setting. In a manufacturer-retailer-consumer chain, a manufacturer should improve its relationship with retailers to continue its business. Segmentation is a useful tool for identifying groups...
متن کاملTesting the Exactitude of Estimation Methods in the Presence of Outliers: An accounting for Robust Kriging
Estimation of gold reserves and resources has been of interest to mining engineers and geologists for ages. The existence of outlier values shows the economic part of the deposits subject to the fact that don’t depend on the human or technical errors. The presence of these high values causes a pseudo dramatically increment in variance estimation of economical blocks when applying conventional m...
متن کاملA New Cost Model for Estimation of Open Pit Copper Mine Capital Expenditure
One of the most important issues in all stages of mining study is capital cost estimation. Determination of capital expenditure is a challenging issue for mine designers. In recent decade, quite a few number of studies have focused on proposing estimation models to predict mining capital cost. However, these efforts have not achieved to a predictor model with reliable range of error. Both of ov...
متن کاملA New Model to Speculate CLV Based on Markov Chain Model
The present study attempts to establish a new framework to speculate customer lifetime value by a stochastic approach. In this research the customer lifetime value is considered as combination of customer’s present and future value. At first step of our desired model, it is essential to define customer groups based on their behavior similarities, and in second step a mechanism to count current ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009